Current progress and open challenges for applying deep learning across the biosciences

Abstract

Deep Learning (DL) has recently enabled unprecedented advances in one of the grand challenges in computational biology: the half-century-old problem of protein structure prediction. In this paper we discuss recent advances, limitations, and future perspectives of DL on five broad areas: protein structure prediction, protein function prediction, genome engineering, systems biology and data integration, and phylogenetic inference. We discuss each application area and cover the main bottlenecks of DL approaches, such as training data, problem scope, and the ability to leverage existing DL architectures in new contexts. To conclude, we provide a summary of the subject-specific and general challenges for DL across the biosciences.

Publication
Nature Communications
Nicolae Sapoval
Nicolae Sapoval
PhD student

Nick (4th year PhD student) obtained a B.S. degree in Computer Science and a B.S. with Honors in Mathematics from the University of Chicago. At the University of Chicago Nick worked in wireless networks research and later in computational biophysics focusing on conformational transition modeling for insulin degrading enzyme. His current interests are in the areas of computational biology with a focus on genomic data.

Advait Balaji
Advait Balaji
PhD student

Advait (5th year PhD student) obtained a dual degree, B.E Computer Science and MS Biological Sciences from BITS, Pilani in India. During his undergraduate degree, he received the Khorana Scholarship (2016) from the Indo-US Science and Technology Forum and also a thesis fellowship (2017-18) to work at Icahn School of Medicine, Mount Sinai, NY. At Mount Sinai, he worked on creating a Sub-cellular process-based ontology that predicts whole cell function using Natural Language Processing. His research interests are at the intersection of genomic data science and designing efficient algorithms to analyze genomic data.

Bryce Kille
Bryce Kille
PhD student

Bryce (2nd year PhD student) received his MS in Bioinformatics and BS in Computer Science + Chemistry from the University of Illinois at Urbana-Champaign. As an undergraduate, he worked at Dow Agrosciences in both the computational biology and cheminformatics groups. His projects included developing software for phylogeny analysis and creating models for compound activity prediction. During his Master’s program, Bryce worked in a biochemistry lab developing software for genome mining as well as a on research project for creating bit-wise algorithms for the C++ STL. One of his main interests is casting biological and chemical problems into theoretical computer science questions.

Next
Previous